Another look at superlative modifiers as modified superlatives
Yi-Hsun CHEN — Rutgers University, New Brunswick

Abstract. This paper studies the morpho-semantic puzzle of superlative modifiers (SMs) where in many languages SMs typically involve a quantity adjective and a degree morpheme. This paper takes English at least as a case study and offers a decompositional analysis connecting its semantic properties with its morphological components. One central proposal is that SMs like at least can be structurally decomposed into three morphological pieces: a quantity adjective, a superlative and an existential operator. It is shown that the current analysis not only explains the role of the quantity adjective and degree morphology in the semantics of at least, but also captures two types of semantic parallels suggested in the literature on SMs: the parallel with disjunction and the parallel with epistemic indefinites.

Keywords: superlative modifier, superlative, focus, degree, alternative

1. Introduction

Superlative modifiers (SMs) such as English at least and at most have posed a longstanding and intriguing morpho-semantic puzzle: Why do SMs morphologically involve a quantity adjective and the superlative morpheme? What is the role of quantity adjective and superlative morpheme inside SMs? How are these morphological pieces connected with the semantics of SMs? (1) and (2) below illustrate the relevant facts in English, where the same morphological components least and most are involved in SMs and superlatives.

(1) Superlative modifiers (SMs)
 b. John bought at most [three]F apples.

(2) Quantity superlatives (QSs)
 a. John drank the least water.
 b. John climbed the most mountains.

This paper is dedicated to the morpho-semantic puzzle of SMs by taking English at least as a case study, and offers a decompositional analysis connecting the semantics of at least with its degree morphology. One central proposal is that SMs like at least can be structurally decomposed into three pieces: a quantity adjective, a superlative and an existential operator.

The rest of this paper proceeds as follows. Section 2 introduces some semantic properties of at least (that have been observed in previous studies). Section 3 discusses the semantics of superlatives and points out one crucial semantic difference between SMs and superlatives.

1 I am greatly indebted to Peter Alrenga, Simon Charlow, Veneeta Dayal, Yoshitaka Elewine, Jane Grimshaw, Hadas Kotek, Haoze Li, Chen-Sheng Luther Liu, Chris Kennedy, Jon Ander Mendia, Marcin Morzycki, Lydia Newkirk, Roger Schwarzschild, Yasu Sudo, Kristen Syrett, Yimei Xiang, the audiences at CLS54 and SuB23 for valuable comments and constructive suggestions. This research is funded by the Mellon Fellowship from The Andrew W. Mellon Foundation and Rutgers University. All errors are of course my own.
Section 4 spells out the decompositional analysis and shows how the semantic properties discussed in section 2 follows from the current proposal. Section 5 concludes the paper.

2. Basic facts

This section introduces three empirical properties of English *at least* (some of them have been observed in previous studies, see e.g., Krifka 1999, Geurts and Nouwen 2007, Nouwen 2010, Coppock and Brochhagen 2013, among others): (a) it is focus-sensitive; (b) it is compatible with various types of scales and respect the monotonicity constraint; (c) it makes the prejacent the lower bound among the set of focus alternatives. First of all, it has been observed that *at least* is focus-sensitive: the semantic contribution of *at least* depends on its focus associate and different positions of the associate lead to truth-conditional differences. (3) and (4) (borrowed from Coppock and Brochhagen 2013: 12) illustrates the point.2

(3) We should at least invite [the postdoc]F to lunch.
(4) We should at least invite the postdoc to [lunch]F.

(3) and (4) are truth-conditionally different: the former conveys that we should invite the postdoc to lunch or some other people (higher-ranked than the postdoc in the context, say, assistant professor for example) to lunch; in contrast, the latter conveys that we should invite the postdoc to lunch or to some other occasions (higher-ranked than lunch in the context, say, dinner for example). Moreover, as discussed in Coppock and Brochhagen (2013), (3) and (4) are related to different discourse questions: the former addresses the question “Who should we invite to lunch?”, while the latter the question “What should we invite the postdoc to?”.

Second, *at least* is compatible with various scales (see also Mendia 2016), as shown below.

(5) **Numeral Scales** (a contextual ranking: 4 > 3 > 2)
John *at least* wrote [three]F novels.

(6) **Plurality Scales** (a contextual ranking: adam⊕bill⊕chris > adam⊕bill > adam)
John *at least* hired [Adam and Bill]F.

(7) **Lexical Scales** (a contextual ranking: gold medal > silver medal > bronze medal)
John *at least* got a [silver]F medal.

(8) **Pragmatic Scales** (a contextual ranking: cherries > apples > bananas)
John *at least* bought [apples]F.

Note that the numerical scale and plurality scale are based on semantic strength (entailment relation). Therefore, writing four novels *entails* writing three novels, and hiring Adam and Bill *entails* hiring Adam and hiring Bill. In contrast, the lexical scale and pragmatic scale are based on pragmatic strength (inon-entailment relation). Thus, winning a gold medal does *not* entail winning a silver medal, and buying apples does *not* entail buying bananas.

2 To my knowledge, Krifka (1998) is the first study pointing out that English *at least* is focus-sensitive.
Moreover, a novel observation here is that the ranking of the alternatives seems to respect the monotonicity property (cf. Schwarzschild 2006). By manipulating the context, it seems easy enough to reverse the ordering between the alternatives in the case of pragmatic scales. In contrast, however, it does not seem possible to reverse the ordering in the case of numerical scales or plurality scales, even with some contextual effort.

3 For lexical scales, although context manipulations are not impossible, they are harder because the ordering is based on our common world knowledge. Instances of lexical scale are gold medal > silver medal > bronze medal, and full professor > associate professor > assistant professor.

Context: John and his friends plan to have a party. John is responsible for buying some fruit for the party. There are three types of fruit available to them: cherries, apples and bananas. However, they are poor and do not have enough money to buy everything. For them, bananas are the optimal because they are the cheapest; apples are less optimal but acceptable because they are still cheaper than cherries.

The contextual ranking (in terms of price): bananas > apples > cherries

Context: John is planning to hire some people. There are three applicants in the discourse: Adam, Bill and Chris. But the budget is limited. If three people are all hired, John needs to pay a great amount of money for their salary. If only Adam and Bill are hired, the situation is better, but John still pays more than he does in hiring only Adam. The best situation is simply to hire just one person while getting all the work done.

The intended contextual ranking: only adam > only adam&bill > only adam&bill&chris

Under the context (9), the utterance with at least in (8) is understood to convey that John bought apples or bananas (given the contextual ranking: bananas > apples > cherries). This means that the original ranking (cherries > apples > bananas) in (8) is now reversed. In contrast, the utterance with at least in (6) cannot be understood to be that Liubei hired only Adam and Bill, or hired only Adam, even with the contextual massage in (10). This indicates that the original ranking (adam&bill&chris > adam&bill > adam) in (6) cannot be reversed. The same observation applies numeral scales. I leave it for readers to verify the case of numerical scales. In short, these facts indicate that there is an intrinsic discrepancy between scales based on semantic strength and those based on pragmatic strength.

Third, in each sentence (5) – (8), the associate of at least is made as the lower bound among the set of focus alternatives. Take (5) for example, the sentence is judged true if and only if John wrote three novels or John wrote more than three novels, where the number three (the focus associate) is the lower bound on the quantity of novels that John wrote. Similarly, in (7), a silver medal is the lower bound on the type of medals that John won.

To sum up, I have shown that at least demonstrates three semantic properties: (a) it is focus-sensitive; (b) it is compatible with various types of scales and respect the monotonicity constraint; (c) it makes the prejacent the lower bound among the set of focus alternatives. With these in mind, the task then is how to account for those semantic properties of at least while connecting with the contribution of its superlative morphology least. To be concrete, the empirical facts to be captured in this paper are summarized in (11).

The morpho-semantic properties of English at least
a. **The morpho-semantic puzzle**: The same morphological components *least* are involved in superlative modifiers (*at least*) and quantity superlatives (*the least*).

b. **Focus-sensitivity**: The semantic contribution of *at least* depends on the position of its focus associate.

c. **Scale types and their discrepancy**: *At least* is compatible with various scales (based on semantic strength or pragmatic strength). However, in contrast to lexical scales and pragmatic scales, the ordering between the alternatives cannot be reversed in numerical scales and plurality scales.

d. **The bounding property**: Under sentences with *at least*, the prejacent is set up as the lower bound among the set of focus alternatives.

Before spelling out the decompositional analysis of *at least*, I would like to briefly discuss the semantics of superlatives and point out one crucial semantic difference between superlative modifiers and superlatives: the former conveys the non-strict comparison relation, but the latter encodes the strict comparison relation.

3. The semantics of superlatives

A sentence containing a superlative expression, such as *the highest mountain* in (12), can receive different interpretations depending on how the comparison class is specified with respect to different constituents of the sentence (Heim 1985, Szabolcsi 1986, Gawron 1995, among others). When the comparison class is determined with respect to the superlative DP itself, the absolute reading arises. In contrast, the relative reading arises when the comparison class is established with respect to one of the constituents in the sentence, such as Adam.

(12) Adam climbed the highest mountain.

Absolute reading: Adam climbed the mountain that is higher than any other (relevant) mountain.

Relative reading: Adam climbed a mountain that is higher than any other (relevant) individual did.

Szabolcsi (1986) and Heim (1985, 1999) propose that the absolute-relative ambiguity of a superlative sentence is derived by allowing the superlative morpheme –*est*, with the semantics in (13), to take different scope within the clause. Under this movement approach, the ambiguity of a superlative sentence is actually a case of structural ambiguity. The computation of the relevant pieces is illustrated below, with the absolute reading in (14) and the relative reading in (15).

$$\lambda C_{<e>} \lambda G_{<d, e>} \lambda x_{<e>}. \forall y[y \in C \land y \neq x \rightarrow \max(\lambda d.G(x, d)) > \max(\lambda d.G(y, d))]$$

b. Presuppositions: \(x \in C, \forall y[y \in C \land y \neq x \rightarrow \exists d[G(y, d)] \)

(14) Absolute Reading

a. \([DP \ the \ [NP \ [-est \ (C)]\ [NP \ d\text{-high mountain}]]]]\)

b. \([d\text{-high mountain}] = \lambda d.\lambda x.\text{mountain}(x) \land \text{high}(x) \geq d\)

c. \(C = \{x: \exists d.\text{mountain}(x) \land \text{high}(x) \geq d\}\)

d. \([DP] = \exists x\forall y[y \in C \land y \neq x \rightarrow \max(\lambda d.\text{mountain}(x) \land \text{high}(x) \geq d)]\)
superlative morpheme originally formulated in Heim (1999) is couched in the A-not-A approach, as shown below.

- **Presuppositions:**
 1. The two-place superlative operator
 2. The three-place superlative operator

(below.

At this point, it is worth noting that superlatives are focus-sensitive (e.g., Heim 1999). For example, (17) and (18) are truth-conditionally different; on the relative reading, (17) conveys that John bought more apples on Sunday than any other day, while (18) conveys that John bought more apples than anyone else did on Sunday.

(17) John bought the most apples on [Sunday].

(18) [John]F bought the most apples on Sunday.

To synthesize the scope-taking property of the superlative morpheme and the contribution of focus, Heim (1999) provides another possible entry as defined in (19). The idea behind (19)

(15) Relative Reading
- a. \([\text{dp Adam [} \text{-est (C)} \text{]} \lambda d. \lambda x. \text{[} v_p x \text{ climbed a } d\text{-high mountain}]\]
- b. \(C = \{ x: \exists d \exists z [\text{mountain}(z) \land \text{high}(z) \geq d \land x \text{ climbed } z] \}\]
- c. \(\llbracket \text{IP} \rrbracket = 1 \text{ iff } \forall y[y \in C \land y \neq \text{adam} \rightarrow \max (\lambda d. \exists z [\text{mountain}(z) \land \text{high}(z) \geq d \land \text{adam climbed } z]) \geq \max (\lambda d. \exists z [\text{mountain}(z) \land \text{high}(z) \geq d \land y \text{ climbed } z])\]

Under the absolute reading in (14), the superlative morpheme takes scope within the DP and the comparison class \(C\) is a set of relevant mountains. In contrast, under the relative reading shown in (15), the superlative morpheme takes scope outside the DP (specifically, -est scopes over the VP) and the comparison \(C\) is a set of relevant mountain-climbers.

Alternatively, some researchers pursue an in-situ approach (e.g., Farkas and Kiss 2000, Sharvit and Stateva 2002), where the superlative morpheme never moves out of the DP, and the relative reading is derived from domain restriction. Consider (16), where the bolded part indicates the additional contextual restriction on the value of \(C\).

(16) Relative Reading (an in-situ approach)
- a. \([\text{dp the [np [-est (C)]]}] \llbracket \text{np} \text{ [est (C)]} \rrbracket \llbracket \text{np } d\text{-high mountain}]\]
- b. \(\llbracket d\text{-high mountain} \rrbracket = \lambda d. \lambda x. \text{mountain}(x) \land \text{high}(x) \geq d\)
- c. \(\llbracket \text{DP} \rrbracket = \llbracket x \forall y[y \in C \land y \neq x \rightarrow \max (\lambda d. \text{mountain}(x) \land \text{high}(x) \geq d) \geq \max (\lambda d. \text{mountain}(y) \land \text{high}(y) \geq d) \rrbracket\]

At this point, it is worth noting that superlatives are focus-sensitive (e.g., Heim 1999). For example, (17) and (18) are truth-conditionally different; on the relative reading, (17) conveys that John bought more apples on Sunday than any other day, while (18) conveys that John bought more apples than anyone else did on Sunday.

To synthesize the scope-taking property of the superlative morpheme and the contribution of focus, Heim (1999) provides another possible entry as defined in (19). The idea behind (19)
is that focus helps set the contextual value of the domain C. Put differently; focus restricts the domain of the superlative operator.

$\text{(19) a. } [\text{est}] = \lambda C \cdot \lambda d. \lambda r. \lambda P_{\text{cd}, r.} \forall Q [Q \in C \land Q \neq P \rightarrow \max(\lambda d. P(d)) > \max(\lambda d. Q(d))]$

$\text{b. Presuppositions: } P \in C, \exists Q [Q \in C \land Q \neq P]$

With (19) in mind, the relevant computation of (17) is shown in (20), and the relevant computation of (18) is shown in (21).

$\text{(20) a. The LF of (17): } [-\text{est } (C)] [\lambda d. [\text{[} \lambda P_{\text{cd}, r.} \forall Q [Q \in C \land Q \neq P \rightarrow \max(\lambda d. P(d)) > \max(\lambda d. Q(d))] \text{[}]] \text{[}]]$

$\text{b. } C = \{x. \lambda d. \lambda r. \lambda P_{\text{cd}, r.} \forall Q [Q \in C \land Q \neq P \rightarrow \max(\lambda d. P(d)) > \max(\lambda d. Q(d))] \} \text{[} \}$

$\text{c. } [[(17)]] = 1 \text{ iff } \forall Q [Q \in C \land Q \neq (\lambda d. \lambda r. \lambda P_{\text{cd}, r.} \forall Q [Q \in C \land Q \neq P \rightarrow \max(\lambda d. P(d)) > \max(\lambda d. Q(d))])]

$\text{(21) a. The LF of (18): } [-\text{est } (C)] [\lambda d. [\text{[} \lambda P_{\text{cd}, r.} \forall Q [Q \in C \land Q \neq P \rightarrow \max(\lambda d. P(d)) > \max(\lambda d. Q(d))] \text{[}]] \text{[}]]$

$\text{b. } C = \{x. \lambda d. \lambda r. \lambda P_{\text{cd}, r.} \forall Q [Q \in C \land Q \neq P \rightarrow \max(\lambda d. P(d)) > \max(\lambda d. Q(d))] \} \text{[} \}$

$\text{c. } [[(18)]] = 1 \text{ iff } \forall Q [Q \in C \land Q \neq (\lambda d. \lambda r. \lambda P_{\text{cd}, r.} \forall Q [Q \in C \land Q \neq P \rightarrow \max(\lambda d. P(d)) > \max(\lambda d. Q(d))])]

In both cases; the superlative operator plus its domain restrictor $-\text{est } (C)$ takes scope over the whole sentence. Recall that the crucial difference between (17) and (18) lies in the position of focus. Crucially, the effect of focus is captured by different contextual values of the domain C: in (20b), the set of degree properties vary with respect to the days John bought apples, while in (21b) the set of degree properties vary with respect to the individuals who bought apples on Sunday.

The choice between a movement approach and an in-situ approach is an ongoing debate in the literature on superlatives. However, it may well be that both approaches are needed (see Tomaszewicz 2015 for a comparative perspective on the correlation between definiteness marking and different types of relative readings). The debate between the two approaches will not concern us in this paper. What is crucial here is that under either approach, the semantics of superlatives, like that of comparatives, encode a strict comparison relation: a greater-than relation symbolized by $>$ (or a less-than relation symbolized by $<$).
In a sharp contrast to the strict comparison relation in the semantics of superlatives, a non-strict comparison relation (e.g., the greater-than/less-than or equal-to relation) has been assigned to the semantics of \textit{at least} in the previous studies, as shown in (22).\footnote{Although there have been various proposals for the semantics of \textit{at least}, they can be generally classified into two approaches, depending on what kind of scales SMs are thought to make reference to: a degree-based approach and a discourse-based approach. The degree-based approach considers SMs as degree operators and invokes a scale of degrees (Nouwen 2010, Kennedy 2015). In contrast, the discourse-based approach invokes scales of pragmatic strength, which are not restricted to numerals and may not even respect entailment (e.g., Krifka 1999, Geurts and Nouwen 2007, Büring 2008, Coppock and Brochhagen 2013).}

\begin{enumerate}
\item The non-strict comparison relation of \textit{at least}
\begin{enumerate}
\item The degree-based approach (e.g., Kennedy 2015)
\[\texttt{\textit{at least}} = \lambda m, \lambda P, \lambda n. \max\{n \mid P(n)\} \geq m\]
\item The discourse-based approach (e.g., Coppock and Brochhagen 2013)
\[\texttt{\textit{at least}}(C) = \lambda p, \exists q \in C \land q(w) \land q \geq _1 p\]
\end{enumerate}
\end{enumerate}

Although the non-strict comparison relation may correctly characterize the truth-conditions of sentences with \textit{at least} (see section 2), it raises a non-trivial question in connecting with the semantics of superlatives: Where does the “equal-to” relation (i.e., =) come from? From our discussion above, superlatives encode the strict-comparison, but not the non-strict one.

Despite the issue of the strict comparison vs. non-strict comparison, both superlatives and superlative modifiers do convey a similar bounding property. (23) and (24) illustrate the point.

\begin{enumerate}
\item John drank the least coffee. \hfill Superlative
\item John ate at least \{three\} apples. \hfill Superlative modifier
\end{enumerate}

\begin{enumerate}
\item John ate the most apples. \hfill Superlative
\item John ate at most \{three\} apples. \hfill Superlative modifier
\end{enumerate}

In (23), sentence (a) conveys that the quantity of coffee that John drank is the \textit{lowest}, and sentence (b) that the \textit{lowest} quantity of apples that John ate is three. Similarly, in (24), sentence (a) conveys that the quantity of apples that John ate is the \textit{greatest}, and sentence (b) that the \textit{greatest} quantity of apples that John ate is three. This semantic parallel on the bounding property suggests that superlatives and superlative modifiers should be intrinsically connected in the semantics, beyond the level of surface morphology.

To sum up, we have seen that one crucial aspect in the interpretation of superlatives lies in how the content of the comparison class is determined; in this respect, focus plays an important role in shaping the comparison class. Furthermore, we have also seen that superlatives semantically encode the strict comparison, while superlative modifiers convey the non-strict comparison. Finally, both constructions similarly convey a bounding property on the relevant scale. Given our discussion so far, anyone who wants to connect the semantics of superlatives with that of superlative modifiers, she has to find a way maintaining the strict comparison of superlatives while deriving the non-strict comparison of superlative modifiers somewhere else. The next section provides one such proposal.
4. The proposal

The section proceeds as follows. Section 4.1 proposes that *at least* can be structurally decomposed into three major components: a quantity adjective (Q-adjective), a superlative SupP and an existential operator E-OP. Also, it demonstrates how the three components are semantically composed in the internal structure of *at least*. Section 4.2 first illustrates how the current decompositional analysis captures the semantic properties of *at least* (discussed in section 2) and then discusses how the two types of semantic parallels (the parallel with disjunction and that with epistemic indefinites) are captured.

Below, I briefly introduce two core assumptions in this paper. First, I assume Rooth (1992)’s focus semantics. Briefly put, every expression φ has an ordinary semantic value and a focus semantic value. For an unfocused constituent, its focus semantic value is a singleton set containing the ordinary value of that expression. For a focused constituent, its focus semantic value is a set of alternatives: a set of objects that have the same semantic type as the focused constituent. The set of alternatives induced by focus is computed recursively (essentially as in Rooth 1992). Furthermore, the semantic contribution of a focus-sensitive operator depends on the focus semantic value of its sister. The set of focus alternatives projects until they meet the focus operator where they are interpreted by a squiggle operator \sim and restricted by a contextual variable C. The definition of \sim in (25) is drawn from Rooth (1996: (20)).

(25) Where φ is a syntactic phrase and C is a syntactically covert semantic variable, $\varphi \sim C$ introduces the presupposition that C is a subset of $[\llbracket \varphi \rrbracket]^f$ containing $[\llbracket \varphi \rrbracket]^o$ and at least one another element.

Second, I assume Bobalijk (2012: 4)’s Containment Hypothesis, as shown in (26).

(26) Containment Hypothesis (Bobalijk 2012: 4)
The representation of the superlative properly contains that of the comparative.

The next section presents a decomposition of English *at least*.

4.1. Decomposing *at least*

To begin with, I propose that English SMs can be structurally decomposed into three major components: a quantity adjective (Q-adjective), a superlative SupP and an existential operator E-OP. Assuming Bobalijk (2012)’s Containment Hypothesis, I propose that in English SMs, the superlative construction structurally embeds a comparative construction, as illustrated in (27). Note that CompP represents the embedded covert comparative construction.

(27) $[[\text{SupP} \text{-est} [\text{CompP} \text{Comp}^0 [\text{AdjP} \text{much}]]]]$

Regarding the semantic details, let’s start in a bottom-up fashion. For the quantity adjective *much*, I propose that it encodes a measure function μ_c, which maps the elements induced by focus to their corresponding positions along a contextually given dimension, as defined in
Note that η is a meta-variable, intended to capture the fact that the semantic type of focused elements may vary.

\[\llbracket \text{much} \rrbracket^c = \lambda a.\mu_c(a) \]

Moreover, I propose that in the case of SMs, the measure function μ_c respects the monotonicity constraint, but crucially not restricted to it (cf. Wellwood 2014, 2015). This has two consequences immediately. First, English SMs such as *at least* (and their cross-linguistic counterparts) can apply to the alternatives whose domain is not structured (e.g., by the part-of relation), as in the case of lexical scale and pragmatic scale. Second, when the domain of the alternatives is structured, as in the case of numerical scale and plurality scale, the structure-preserving mapping guarantees that the output ranking between the alternatives cannot be altered. The definition of monotonicity is offered below.

(29) **Monotonicity**

A measure function $\mu: D_{\text{Part}} \to D_{\text{Deg}}$ is **monotonic** iff for all $\alpha, \beta \in D_{\text{Part}}$, if $\alpha \prec_{\text{Part}} \beta$, then $\mu(\alpha) \prec_{\text{Deg}} \mu(\beta)$.

Given the current analysis, the discrepancy between different scale types is now derived: When the input focus alternatives have their own internal structure (e.g., a partial ordering or a total ordering), through a structure-preserving mapping, the output ranking between the alternatives cannot be altered despite contextual effort (e.g., numerical scale and plurality scale). In contrast, when the set of focus alternatives is NOT structured by entailment relation or part-of relation, the output ranking between the alternatives is subject to contextual factors and thus is not constant across contexts (e.g., lexical scale and pragmatic scale).

Next, the comparative morpheme Comp$^+$ (cf. English -er) takes the Q-adjective much as its first argument and returns a comparison relation between the alternatives, as in (30). The semantics of the superlative morpheme -est offered in (31) is like the entry traditionally assigned to English –est (Heim 1999), except for the additional comparison relation and its type-flexibility. The semantics of SupP is obtained in (31), when the pieces are put together.

(30) \[\llbracket \text{Comp}^+P \rrbracket^c = \lambda a\lambda b.\mu_c(a) > \mu_c(b) \]

(31) \[\llbracket \text{est} \rrbracket^c = \lambda COM_{\text{sg}, \text{rp}, \text{sp}}. \lambda C_{\text{sp}, \text{rp}}. \lambda a_{\text{sp}}. \forall \beta[\beta \in C \land \beta \neq a \rightarrow COM(a, \beta)] \]

Following the decompositional analysis of English little and less along the line in Heim (2006a, b) and Büring (2007a, b), I propose that the quantity adjective little contributes to two semantic components at LF: a negative feature NEG and a covert *much* (see also Solt 2009, 2015). The covert comparative morpheme Comp$^+$ combined with the negative feature NEG is reanalyzed as a covert comparative morpheme Comp$^-$ (with the opposite comparison relation), as defined in (32). The connection between Comp$^+$ and Comp$^-$ is reminiscent of Heim’s and Büring’s analyses of English less as a reanalyzed result from the combination of a negation contributed by adjectives with negative polarity (glossed as LITTLE in their analyses) and the comparative morpheme –er.

(32) NEG-Comp$^+$ is reanalyzed as Comp$^-$

(Heim 2006a, b; Büring 2007)
The semantics of \(\text{Comp}^- \) (cf. English \textit{less}) takes the Q-adjective \textit{much} as its first argument and returns a comparison relation between the alternatives along a contextually-valued scale, as defined in (33). Combining with the meaning pieces of \textit{much} and \(-\text{est}\) above, the semantics of \text{SupP} (i.e., \textit{least}) involved in \textit{at least} is obtained, as shown in (34).

\[
\begin{align*}
\text{[[\text{Comp}^- \ P]]}^c & = \lambda \alpha \lambda \beta. \mu_c(\alpha) < \mu_c(\beta) \\
\text{[[[\text{SupP} -\text{est} \ [\text{Comp}^- \ P \ \text{AdjP} \ \text{much}]])]}^c & = \lambda C_{\eta, r}. \lambda C_{\eta, r} \lambda \alpha_{\eta, r}. \forall \beta[\beta \in C \land \beta \neq \alpha \rightarrow \mu_c(\alpha) < \mu_c(\beta)] \text{SupP}
\end{align*}
\]

Finally, the existential operator (propositional version), the third component, is offered below.

\[
\begin{align*}
\text{[[\text{E-OP}]]}^c & = \lambda \alpha_{\eta, r}. \lambda \alpha_{\eta, r}. \lambda C_{\eta, r}. \lambda \alpha_{\eta, r}. \forall \gamma[\gamma \in C \land \gamma \in \text{Sup} (C, \alpha)]
\end{align*}
\]

Putting together the semantics of \text{SupP} and that of \text{E-OP}, the semantics of \textit{at least} (propositional version) is obtained in (36). The overall internal structure of \textit{at least} is in (37).

\[
\begin{align*}
\text{[[at least(C)]]}^c & = \lambda \alpha_{\eta, r}. \exists \gamma[\gamma \in C \land \gamma \in \forall \beta[\beta \in C \land \beta \neq \alpha \rightarrow \mu_c(\alpha) < \mu_c(\beta)]]
\end{align*}
\]

(37) The internal structure of English SM \textit{at least} at LF

\[
\begin{array}{c}
\text{E-OP} \\
\text{Sup} \\
\text{Comp}_P \\
\text{AdjP}
\end{array}
\]

\[
\text{Sup} \begin{array}{c}
\text{at least(C)}
\end{array} \begin{array}{c}
\text{Comp}_P
\end{array}
\]

According to (36), \textit{at least} takes the prejacent proposition \(\alpha \) and conveys that there is one proposition \(\gamma \) in the domain \(C \) such that \(\gamma \) is true. Moreover, the superlative \text{SupP} (i.e., \(\forall \beta[\beta \in C \land \beta \neq \alpha \rightarrow \mu_c(\alpha) < \mu_c(\beta)] \)) requires all the alternative propositions that are contextually relevant and non-identical to the prejacent \(\alpha \) be higher ranked than the prejacent \(\alpha \). In other words, \text{SupP} excludes all the lower alternatives while keeping the higher alternatives. Given the focus presuppositions imposed by the squiggle operator \(\sim \) in (25), repeated as (38) below, the prejacent \(\alpha \) has to be an element of the domain \(C \). Taken together, an assertion with \textit{at least} amounts to saying that there is one element \(\gamma \) in the domain \(C \) which is a set consisting of the prejacent \(\alpha \) and its higher alternatives \(\beta \) such that the element \(\gamma \) is true. The apparent non-strict comparison in the truth-conditions of sentences with \textit{at least} is

\[
\begin{align*}
\text{at least(C)} & = \lambda \alpha_{\eta, r}. \lambda \alpha_{\eta, r}. \lambda C_{\eta, r}. \lambda \alpha_{\eta, r}. \forall \gamma[\gamma \in C \land \gamma \in \forall \beta[\beta \in C \land \beta \neq \alpha \rightarrow \mu_c(\alpha) < \mu_c(\beta)]]
\end{align*}
\]

\[
\begin{align*}
\text{[at least(C)]}^{wc} & = \lambda \alpha_{\eta, r}. \lambda P_{\eta, r}. \exists \gamma[\gamma \in C \land \gamma \in \forall \beta[\beta \in C \land \beta \neq \alpha \rightarrow \mu_c(\alpha(P)) < \mu_c(\beta(P))]]
\end{align*}
\]

8 To capture the fact that SMs can be syntactically adjoined to constituents of non-propositional meanings, one may assume that English \textit{at least} also has the following non-propositional lexical entries, which are derived by type-shifting (e.g., the Geach rule and the backward Geach rule).

a. A non-propositional version (by the Geach rule)

\[
\begin{align*}
\text{[[at least (C)]]}^{wc} & = \lambda \alpha_{\eta, r}. \lambda P_{\eta, r}. \exists \gamma[\gamma \in C \land \gamma \in \forall \beta[\beta \in C \land \beta \neq \alpha \rightarrow \mu_c(\alpha(P)) < \mu_c(\beta(P))]]
\end{align*}
\]

b. A non-propositional version (by the backward Geach rule)

\[
\begin{align*}
\text{[[at least(C)]]}^{wc} & = \lambda \alpha_{\eta, r}. \lambda P_{\eta, r}. \exists \gamma[\gamma \in C \land \forall \beta[\beta \in C \land \beta \neq \alpha \rightarrow \mu_c(\alpha(P)) < \mu_c(\beta(P))]]
\end{align*}
\]
thus derived, more specifically, from the interaction between the focus presuppositions imposed by the squiggle operator ~ and the semantics of the superlative SupP.

\[(38) \quad a \sim C \text{ is defined iff } \quad \left[\left. a \right| \circ \right] \in C \land \exists a'[a' \neq a \land \left[\left. a' \right| \circ \right] \in C] \land C \subseteq [a] \]

Notice that E-OP is assumed to be covert in English and the preposition at is treated as semantically vacuous in the compositional process. One alternative view would be to say that the preposition at is actually an overt realization of the existential operator E-OP in English. On this view, it is important to note that English may not be the only language where the E-OP is overtly realized. Two other candidates are observed: the morpheme al in Italian SMs (al massimo ‘at most’ and al meno ‘at least’) and the morpheme au in French SMs (au plus ‘at most’ and au moins ‘at least’). Seen in this light, I leave open this alternative view; further studies on the morpho-semantics of SMs are needed to verify whether the realization of the E-OP is limited to the family of Indo-European languages.

Before leaving this section, let me briefly highlight several important features of the current decompositional analysis of SMs: (a) Q-adjectives play a crucial role in encoding a measure function mapping the alternatives to their corresponding positions ordered along a contextually-valued scale; this provides the foundation of the scalarity of SMs; (b) the superlative SupP has dual roles: it not only serves as a domain restrictor of SMs but also crucially introduces the scalarity of SMs, which is a comparison relation between the prejacent and its alternatives; (c) the internal structure of at least contains a superlative, which in turn structurally embeds a comparative (Containment Hypothesis); (d) the existential operator E-OP might be overtly realized in some languages, while covert in others.

4.2. Deriving the semantic properties of at least

This section illustrates how the current analysis captures the semantic properties of at least (discussed in section 2). Recall that English at least demonstrates three semantic properties: (a) it is focus-sensitive; (b) it is compatible with various types of scales and there is a discrepancy between scales based on semantic strength (numerical scales and plurality scales) and those based on pragmatic strength (lexical scales and pragmatic scales); (c) it makes the prejacent the lower bound among the set of focus alternatives.

First, under the current analysis, information focus induces a set of elements serving as the input to the measure function in the semantics of Q-adjective. In this sense, focus determines the input domain of Q-adjective and it thus follows that at least is focus-sensitive.

Second, as mentioned in section 4.1, depending on whether the set of focus elements has its internal structure, a discrepancy between scales on semantic strength and those on pragmatic strength is expected. More specifically, when the set of the input focus elements stands in a partial ordering or a total ordering, through a structure-preserving mapping, the output ranking between the elements cannot be altered despite contextual effort. This is the case of numerical scales and plurality scales. In contrast, when the set of the input focus elements is NOT structured by the entailment relation or a part-of relation, the output ranking between
the elements is subject to contextual factors and is thus not constant across contexts. This is the case of lexical scales and pragmatic scales. The discrepancy between scales is derived.

Third, under the current analysis, the bounding property of *at least* results from the fact that the prejacent is set up as the comparative standard in the strict comparison relation encoded in the semantics of the superlative SupP (see (34)). Below, the sentence (39) and its computation (40) illustrate the point.

(39) Adam is *at least* an [associate]f professor.

(40) a. LF: \([vP \text{at least}(C) \ [vP \text{Adam be an [associate]f professor}] \sim C] \)
 b. \(\llbracket \text{at least}(C) \rrbracket \wedge c \)
 \(= \lambda_{\alpha\sim C}.\exists \gamma \in C \land \gamma_w \land \forall \beta \in C \land \beta \neq \alpha \rightarrow \mu_c(\alpha) < \mu_c(\beta) \)
 c. \(\alpha \sim C \) is defined iff \(\llbracket \alpha \rrbracket^o \in C \land \exists \alpha' [\alpha' \neq \alpha \land \llbracket \alpha' \rrbracket^o \in C] \land C \subseteq \llbracket \alpha \rrbracket^f \)
 d. \(\llbracket (39) \rrbracket \wedge (w, c) = 1 \) iff \(\exists \gamma \in C \land \gamma_w \land \forall \beta \in C \land \beta \neq \lambda w. \text{Adam is an associate professor in } w \rightarrow \mu_c(\lambda w. \text{Adam is an associate professor in } w) < \mu_c(\beta) \)

Because of the presuppositions introduced by the ~ squiggle operator (Rooth 1992), the prejacent proposition \(\alpha \) must be an element in the domain \(C \). Furthermore, because of the domain restrictor SupP, all the elements \(\beta \) non-identical to the prejacent \(\alpha \) are ranked above the prejacent \(\alpha \). Put differently, the semantics of SupP removes the lower alternatives from the domain \(C \). Taken together; the domain \(C \) combined with the contribution of SupP now denotes a set consisting of the pejacent and its higher alternatives. According to (40), (39) is judged true if and only if there is one element in the domain (i.e., in the set consisting of the prejacent and its higher alternatives) such that the element is true. Assume that the set of propositional alternatives induced by focus is \(\{ \lambda w. \text{Adam is a full professor in } w, \lambda w. \text{Adam is an associate professor in } w, \lambda w. \text{Adam is an assistant professor in } w \} \), given the ranking of the alternatives is: \(\lambda w. \text{Adam is a full professor in } w \succ \lambda w. \text{Adam is an associate professor in } w \succ \lambda w. \text{Adam is an assistant professor in } w \), the truth-conditions in (40) require (39) to be true if and only if Adam is a full professor or Adam is an associate professor.

Note that a natural consequence of the current analysis is that both superlative modifiers and superlatives convey a similar bounding property, as we have seen in (23), because both constructions involve a superlative. Crucially, the apparent non-strict comparison of *at least* results from the focus presuppositions (i.e., the prejacent must be an element in the domain) and the semantics of SupP (i.e., it removes the lower alternatives while keeping the higher alternatives in the case of *at least*).

Before leaving this section, I would like to point out that the current analysis additionally captures two types of semantic parallels: (a) the parallel to disjunction (Büring 2008); (b) the parallel to epistemic indefinites (Nouwen 2015). Let’s first consider the semantic parallel between *at least* and disjunction. Simply put, an existential claim over a set amounts to a disjunction of each element in the set. This is informally schematized in (41).

9 For simplicity and illustration, I assume that the preverbal *at least* is syntactically adjoined to vP and the subject *Adam* reconstructs back to Spec, vP (where it is originally generated). Nothing crucial in my proposal hinges on these assumptions.
The parallel with disjunction
\[\exists \gamma \ [\gamma \in \{ \alpha, \beta \} \land \gamma \text{ is true}] \Leftrightarrow \alpha \text{ is true} \lor \beta \text{ is true} \]

Suppose that \(\alpha, \beta \) and \(\gamma \) are propositions; \(\alpha \) is the prejacent and \(\beta \) is the higher alternative. The claim that there is a proposition \(\gamma \) in the set \(\{ \alpha, \beta \} \) such that \(\gamma \) is true is equivalent to the disjunctive claim that the prejacent \(\alpha \) is true or the proposition \(\beta \) is true. In this respect, under the current analysis, English \textit{at least} is not only parallel with disjunction for the pragmatic calculation of ignorance inferences (as argued in Büring 2008 and others), but also parallel with disjunction from the viewpoint of their semantics.

Finally, let’s consider the parallel between \textit{at least} and epistemic indefinites (EIs). Both SMs such as \textit{at least} and EIs such as Spanish \textit{algún} lead to ignorance inferences (e.g., Büring 2008 on SMs and Alonso-Ovalle and Menendez-Benito 2010 on Spanish \textit{algún}). For example, (42) illustrates the relevant Spanish example and (43) shows the semantics of \textit{algún} proposed in Alonso-Ovalle and Menendez-Benito (2010).

(42) Epistemic Indefinites: Spanish \textit{algún}
María se casó con \textit{algún} estudiante del departamento de lingüística.
\textit{María married with ALGÚN student of the department of linguistics ‘María married a linguistics student.’}

(43) \[[\textit{algún}] = \lambda f_{<e,t>},<e,t> :: \text{anti-singleton (f). } \lambda P_{<e,r>}, \lambda Q_{<e,r>}, \exists x_{<e>} [f(P)(r) \land Q(r)] \]

According to Alonso-Ovalle and Menendez-Benito, by using \textit{algún} in (42), the speaker is ignorant about the linguistics student who María married. As shown in (43), an important aspect in their analysis of \textit{algún} is that it imposes an anti-singleton presupposition on the domain. In this respect, under the current analysis, the domain of \textit{at least} will always be non-singleton, consisting of the prejacent (obtained by focus presuppositions) and the higher alternatives (obtained by the superlative SupP). In other words, \textit{at least} and \textit{algún} both require a non-singleton domain. This seems to be one common core of those expressions leading to ignorance inferences. For comparison, the semantics of \textit{at least} is repeated below.

(44) \[[\textit{at least(C)}]_{w,c} = \lambda a_{<e,r>}, \exists \gamma [\gamma \in C \land \gamma_w \land \forall \beta [\beta \in C \land \beta \neq \alpha \rightarrow \mu_e(\beta) < \mu_e(\beta)]] \]

Note that the ignorance inference induced by \textit{algún} seems obligatory (Alonso-Ovalle p.c.); in contrast, the ignorance inference associated with \textit{at least} seems defeasible (e.g., Mendia 2016b, among others), thus not obligatory.\(^{10}\) Seen in this light, there is crucial semantic difference between \textit{algún} and \textit{at least} on the non-singleton requirement: In a contrast to \textit{algún} where the anti-singleton requirement is a presupposition, the non-singleton domain of \textit{at least} is part of the truth-conditions. This semantics of \textit{at least} together with the pragmatics of focus result in the sensitivity of their ignorance inferences to different discourse questions (i.e., Questions-Under-Discussions in the sense of Roberts 1996/2012).

\(^{10}\) For purposes of this paper, I do not discuss how the ignorance inference associated with \textit{at least} arises. Given the proposed semantics of \textit{at least}, the current analysis is compatible with the pragmatic approach where the ignorance inference of \textit{at least} arises pragmatically from certain mechanism of implicature calculation (see e.g., Cummis and Katos 2010, Kennedy 2015, Mendia 2016a, b and Schwarz 2016a, b for proposals and discussion).
5. A comparison with Coppock (2016)

This section presents a brief comparison between my decompositional analysis of SMs with Coppock (2016). Building on Penka (2010)’s and Solt (2011)’s insights on the compositional derivation of SMs, Coppock (2016) presents a decompositional analysis of English at least couched in Coppock and Brochhagen (2013)’s discourse-based analysis. There are three core ingredients in Coppock (2016). First, she assumes some sort of alternative semantics where natural language expressions are translated into expressions of a formal logic that denote a set of intensions. (45) shows how the adjective tall is translated under her semantic framework.

\[(45) \quad \llbracket \text{tall} \rrbracket^w = \{ \lambda w \lambda d \lambda x. \text{tall}_v(d)(x) \}\]

Next, she assumes the Containment Hypothesis, where a superlative structurally embeds a comparative. She assigns the comparative morphemes –er and less under phrasal comparatives the semantics in (46). Specifically, -er denotes a singleton set containing a function that expects, besides the world argument, a gradable predicate \(G\), a comparative standard \(s\), and a comparative target \(t\), and returns true if the comparative target is \(G\) to a greater extent than the comparative standard. The entry of less encodes the opposite comparison relation.

\[(46) \quad \begin{align*}
\llbracket \text{-er} \rrbracket^w &= \{ \lambda w. \lambda G <d, \tau t> \lambda s <\tau > \lambda t <\tau >. \max (\lambda d.G_v(d)(t)) > \max (\lambda d.G_v(d)(s)) \}\ \\
\llbracket \text{less} \rrbracket^w &= \{ \lambda w. \lambda G <d, \tau t> \lambda s <\tau > \lambda t <\tau >. \max (\lambda d.G_v(d)(t)) < \max (\lambda d.G_v(d)(s)) \}\end{align*}\]

Second, for the superlative morpheme -t, she assumes the following entry.

\[(47) \quad \llbracket \text{-t} \rrbracket^w = \{ \lambda w. \lambda R <\tau t>, \lambda C <\tau >, \lambda x <\tau >. \forall x' \in C. x \neq x' \rightarrow R_w (x, x') \}\]

In order to compose meanings, she assumes a point-wise, intension-friendly version of functional application, as illustrated below. With the compositional rule, the meaning of least is offered in (49), where \(m\) is a contextually-specified gradable predicate.

\[(48) \quad \text{Functional Application} \]

Let \(\alpha\) and \(\beta\) be the only sub-trees of the tree \(\gamma\). If

(a) \[\llbracket \alpha \rrbracket^w = \alpha', \text{ where } \alpha' \text{ is of type } <s, <\sigma, \tau>>\]

(b) \[\llbracket \beta \rrbracket^w = \beta', \text{ where } \beta' \text{ is of type } <s, \sigma>\]

Then: \[\llbracket \gamma \rrbracket^w = \{ \lambda w. f(w)(a(w)) | f \in \alpha' \land a \in \beta' \}\]

\[(49) \quad \llbracket \text{least} \rrbracket^w = \{ \lambda w. \lambda C <\tau>, \lambda x <\tau>, \forall x' \in C \land x' \neq x \rightarrow \max (m_w(x)) < \max (m_w(x')) \}\]

Finally, the most important ingredient from Coppock’s analysis (I believe) is that the famous at-operator is actually meaningful: it introduces the alternatives and scales. The entry of at is provided in (50), with a sketchy compositional derivation in (51).

\[(50) \quad \llbracket \text{at} \rrbracket^w = \{ \lambda w. \lambda S <\tau C>, \lambda x <\tau>, \lambda y <\tau > | y \in C \land S_w(C)(x) \}\]

‘the set of things \(y\) in a comparison class \(C\) such that \(x\) is \(S\) [least/ most] in \(C\)’
The case of at least three

a. The LF: [at [-t [less [m]]]] three

b. [[at least]] = {\(\lambda w. \lambda x_{<\phi}. \lambda y_{<\phi}. | y \in C \land \forall x' \in C \land x' \neq x \rightarrow \max (m_w(x)) < \max (m_w(x'))\)}

c. [[at least three]] = {\(\lambda w. \lambda y_{<\phi}. | y \in C \land \forall x' \in C \land x' \neq 3 \rightarrow \max (m_w(3)) < \max (m_w(x'))\)}

At this point, it is worth noting that under Coppock’s implementation, the job of at-operator not only introduces the alternatives and scales, but also encodes a non-strict comparison relation (see the meaning of at above). Specifically, the meaning derived for at least three under Coppock’s analysis is a set consisting of the prejacent (the comparative standard) and the relevant higher-ranked elements: \{3, 4, 5, ...\}, ignoring intensionality.

Although Coppock’s analysis elegantly explains the morpho-semantic puzzle of SMs, several important questions are raised by her treatment of at: (a) Why doesn’t focus introduce the alternatives in the first place, as in Rooth (1985, 1992)? (b) What is role of focus in the analysis after all? How to incorporate the contribution of focus in the analysis? (c) Why do SMs have a morpheme specialized in introducing alternatives and scales? (d) Shall we expect such alternative-introducing or scale-introducing morpheme to occur somewhere else in natural language? Maybe also in other focus particles like only and even?

Given these considerations, the decompositional analysis proposed in this paper differs from Coppock (2016) in several crucial respects. First, unlike Coppock’s analysis, the current decompositional analysis is deeply connected with Rooth (1985, 1992)’s focus semantics. Second, assuming focus is anaphoric to some QUDs in a discourse (Rooth 1992, Roberts 1996/2012, among others), just like the discourse function of other focus particles (e.g., only), SMs imposes further restrictions on the set of (possible) answers, despite their internal complexity and an “anti-specific” domain. Third, as discussed in section 3, many discourse-based analyses assign a non-strict comparison relation to the semantics of SMs. An example lexical entry of at least following that approach is presented below.

(52) [[at least (C)]] = \(\lambda p_{<\phi}. \lambda w_{<\phi}. \exists q [q \in C \land q(w) \land q \geq p]\)

Some alternative q in C and as strong as the prejacent p is true in w

However, an entry like (52) raises a non-trivial question pertaining to the morpho-semantic puzzle of SMs: While at least involves an existential quantifier and a non-strict comparison; superlatives typically involve a universal quantifier and a strict comparison, as in (53).

(53) a. Adam drank the least coffee.

b. [[(53a)]] = 1 iff \(\forall y[y \neq Adam \land y \in C \rightarrow \max (\lambda d. Adam ate d-many coffee) < \max (\lambda d. y ate d-many coffee)]\)

In Coppock(2016)’s analysis, the non-strict comparison is obtained through the defined semantics of the at-operator. In contrast, under the current analysis, the non-strict comparison of SMs is only an illusion: it is derived from the SupP collaborating with focus presuppositions. There is no need to hard-wire a non-strict comparison relation into the semantics of SMs.
Finally, it is worth pointing out that despite the several differences discussed above, the current analysis, in fact, is largely inspired by Coppock (2016). In particular, the two analyses share two significant assumptions: (a) both analyses adopt Bobaljik’s Containment Hypothesis in their decomposition of SMs; (b) both analyses adopt the view that the internal structure of SMs is an instantiation of phrasal comparatives.

6. Concluding remarks

In this paper, I have proposed a decompositional analysis of SMs connecting their degree morphology with their semantic properties, by taking English at least as a case study. One central proposal is that SMs like at least can be structurally decomposed into three pieces: a quantity adjective, a superlative and an existential operator. There are several important features of the current decompositional analysis of SMs: (a) Q-adjectives play a crucial role in encoding a measure function mapping the alternatives to their corresponding positions ordered along a contextually-valued scale; this provides the foundation of the scalarity of SMs; (b) the superlative SupP has dual roles: it not only serves as a domain restrictor of SMs but also crucially introduces the scalarity of SMs, which is a comparison relation between the prejacent and its alternatives; (c) the internal structure of at least contains a superlative, which in turn structurally embeds a comparative (Containment Hypothesis); (d) both superlatives and SMs convey a similar bounding property because both involve a superlative. (e) the apparent non-strict comparison of at least is derived from the focus presuppositions combined with the semantics of the superlative SupP. (f) the existential operator E-OP might be overtly realized in some languages, while covert in others.

One important issue not touched in this paper concerns how the current analysis connects with an insightful distinction between comparative quantifiers (CQs) and SMs suggested by Nouwen (2010). To the best of my knowledge, Nouwen (2010) is the first study suggesting an insightful distinction between CQs and SMs. In his terminology, the former belongs to the group of Class A modifiers and the latter the group of Class B modifiers, as shown in (54). Nouwen (2010) further proposes that Class A modifiers are degree quantifiers while Class B modifies are not; the latter introduce a bounding property. Although the two classes are internally heterogeneous, Kennedy (2015: (4)) suggests that the distinction between the two groups of modifiers can be understood as in (55):

(54) a. Class A modifiers: more/ fewer/ less than n, over n, between n and m, etc…
 b. Class B modifiers: at least, at most, up to, maximally, minimally, etc…

(55) a. Class A modifiers express exclusive (strict) orderings relative to the modified numeral.
 b. Class B modifiers express inclusive (non-strict) orderings relative to the modified numeral.

Seen in this light, the underlying distinction between CQs and SMs can be understood as pointing to what kind of ordering relation is employed in the semantics. Crucially, the current analysis is not only compatible with the suggested distinction but also decompose the non-strict ordering relation further. More specifically, in the case of SMs, the non-strict ordering
is not a semantic primitive, but derived from focus presuppositions together with the semantic contribution of a superlative component. However, it remains to be seen exactly how the different ordering relation (strict vs. non-strict) is connected with the contrast between CQs and SMs in the robustness of ignorance inferences. One possible line of thought would be that the inclusion of the prejacent (due to focus presuppositions) makes the domain of SMs always non-singleton and thus their resulting ignorance inferences would be more robust than those given by CQs, where their domain may not be always non-singleton (cf. Schwarzschild 2002’s idea on singleton indefinites). Overall, the current analysis of at least adds to Schwarz et al. (2012)’s insight that Class B modifiers are not homogeneous, particularly with respect to whether the inclusive (non-strict) ordering is a semantic primitive.

Finally, it is important to note that the current analysis cannot be the whole story for the morpho-semantic puzzle of SMs because more than one possible morpho-semantic mapping is attested in natural languages. More studies are needed to see how the morpho-semantic mapping works in (56) and (57).

(56) Quantity adjectives plus even-if (e.g., Japanese and Korean)
 a. ooku-temo ‘at most’ Japanese
 many-even.if
 b. sukanaku-temo ‘at least’
 few-even.if

(57) Quantity adjectives plus comparatives (e.g., Magahi, Hindi, Russian)
 a. jaadaa se aadaa ‘at most’ Magahi
 more than more
 b. kam se kam ‘at least’
 less than less

References