On the Morpho-Semantic Puzzle of Superlative Modifiers

Yi-Hsun Chen, Rutgers University
yc565@linguistics.rutgers.edu

The 54th meeting of Chicago Linguistic Society (CLS54)
April 26–28, 2018
Outline

- Main ideas
- The morpho-semantic puzzle
- A formal proposal
- Explaining the morpho-semantic puzzle
- Concluding remarks
Main Ideas
Main ideas

- The **degree morphology** and **quantity adjectives** involved in superlative modifiers (e.g., *at least & at most*)
 - NOT a morpho-semantic coincidence in natural language;
 - Deeply connected with the semantics.
 - More than one strategy mapping out the morpho-semantics of superlative modifiers.

In this talk, I focus on the **superlative** strategy in Chinese (see also English and other languages).
Main ideas

- The morpho-semantics of *zuiduo* ‘at most’:
 - **The Q-adjective**: A measure function mapping the focus alternatives to their corresponding positions along a contextually given scale.
 - **The superlative component**:
 - A strict comparison relation between the prejacent and its alternatives.
 - A domain restrictor, structurally embedded under an existential operator E-OP.
 - **The (covert) existential operator E-OP**: An existential statement over a anti-specific domain.

- The ordering between focus alternatives is a strict comparison, instantiating a structure of phrasal comparatives.
The morpho-semantic puzzle
A long-standing puzzle

- Why do focus particles such as *at least* and *at most* in English involve *quantity adjectives* (Q-adjectives) and *superlative morpheme* in their morphology?

(1) a. Adam climbed the *most* mountains.
 b. Adam climbed the *least* high mountain.

(2) a. Adam at *most* won a [silver]$_F$ medal.
 b. Adam at *least* won a [silver]$_F$ medal.
Morphology - Chinese

- The same expression *zui-duo* ‘at most’, consisting of a superlative morpheme *zui* and a Q-adjective *duo* ‘much’, is used as quantity superlatives and superlative modifiers.

(3) **Quantity Superlatives (Qs)**

Lee na-le *zui-duo* yin-pai.
Lee take-ASP SUP-much silver-medal
‘Lee won the most silver medals.’

(4) **Superlative Modifiers (SMs)**

Lee *zui-duo* na-le [yin]_F_-pai.
Lee SUP-much take-ASP silver-medal
‘Lee at most won a silver medal.’
Morphology – beyond Chinese

- Across languages, SMs involve degree morphology and quantity adjectives in general.

- A sample list (not exhaustive):
 - English: *at least*; *at most*
 - Brazilian Portuguese: *pelo menos*; *no maximo*
 - Chinese: *zui-shao*; *zui-duo*
 - German: *mindestens*; *am meisten*
 - Japanese: *sukunaku-temo*; *ooku-temo*
 - Italian: *al meno*; *al massimo*
 - Maghi, Hindi: *jyaadaa se jyaadaa* *kam se kam*;
 - Turkish: *en az*; *en çok*
Q: What did Lee do for the party?

✓ A contextual ranking (on what Lee could contribute):
 - cook dinner > buy apples > clean house

Lee SUP-much buy-ASP apples
‘Lee at most bought apples.’

(6) #Lee zui-duo mai-le [pingguo]ₐ.
Lee SUP-much buy-ASP apples
‘Lee at most bought apples.’
Semantics – Focus-sensitivity

Q: What fruit did Lee buy for the party?

✓ A contextual ranking (on what fruit Lee could buy):
 cherries > apples > bananas

(7) #Lee zui-duo [mai-le pingguo]F.
 Lee SUP-much buy-ASP apples
 ‘Lee at most bought apples.’

(8) Lee zui-duo mai-le [pingguo]F.
 Lee SUP-much buy-ASP apples
 ‘Lee at most bought apples.’
Semantics – Variety of Scales

(9) **Numerical Scales** (e.g., …4 > 3 > 2…)
Lee *zui-duo xie-le [san]_F-ben-shu.*
Lee SUP-much write-ASP three-CL-book
‘Lee at most wrote three books.’

(10) **Plurality Scales** (e.g., a⊕b⊕c > a⊕b > a, b)
Lee *zui-duo yaoqing-le [Adam han Bill]_F.*
Lee SUP-much invite-ASP Adam and Bill
‘Lee at most invited Adam and Bill.’
Semantics – Variety of Scales

(11) **Lexical Scales** (e.g., gold \succ silver \succ bronze)

Lee zui-duo de-le [yin]_F-pai.
Lee SUP-much win-ASP silver-medal
‘Lee at most won a silver medal.’

(12) **Pragmatic Scales** (e.g., cherries \succ apples \succ bananas)

Lee zui-duo mai-le [pingguo]_F.
Lee SUP-much buy-ASP apples
‘Lee at most bought apples.’
Variety of Scales - English

(13) **Numerical Scales** (e.g., ...4 ≥ 3 ≥ 2...)
John *at most* wrote [three]_F books.

(14) **Plurality Scales** (e.g., a ⊕ b ⊕ c > a ⊕ b > a, b)
John *at most* invited [Adam and Bill]_F.

(15) **Lexical Scales** (e.g., gold > silver > bronze)
John *at most* won a [silver]_F medal.

(16) **Pragmatic Scales** (e.g., cherries > apples > bananas)
John *at most* bought [apples]_F.
Semantics – The Bounding Property

(13) **Numerical Scales** (e.g., …4 \(\succ\) 3 \(\succ\) 2…)
 John **at most** wrote \([three]_F\) books.

(14) **Plurality Scales** (e.g., \(a \oplus b \oplus c \succ a \oplus b \succ a, b\))
 John **at most** invited \([Adam and Bill]_F\).

(15) **Lexical Scales** (e.g., gold \(\succ\) silver \(\succ\) bronze)
 John **at most** won a \([silver]_F\) medal.

(16) **Pragmatic Scales** (e.g., cherries \(\succ\) apples \(\succ\) bananas)
 John **at most** bought \([apples]_F\).
Interim Summary

- Some semantic properties of *zui-duo/ at most*:
 - Focus-sensitivity
 - Compatibility with various scales
 - The bounding property
 (the associate is the upper bound among the alternatives)

- The morpho-semantic puzzle:
 - How exactly is the semantics of *zui-duo/ at most* connected to its morphology (a superlative morpheme and a Q-adjective)?
 - Why do these focus particles (SMs) involve degree morphemes and Q-adjectives in their morphology cross-linguistically?
A Formal Proposal
Three morpho-semantic pieces

- The morpho-semantics of *zuiduo* has three pieces.
 - **The Q-adjective**: A measure function mapping the focus alternatives to their corresponding positions along a contextually given scale.
 - **The superlative component**:
 - A strict comparison relation between the prejacent and its alternatives.
 - A domain restrictor, structurally embedded under an existential operator E-OP.
 - **The (covert) existential operator E-OP**: An existential statement over a anti-specific domain.
- The **ordering** between focus alternatives is a **strict comparison**, instantiating a structure of **phrasal comparatives**.
The internal structure of zui-duo ‘at most’:

- Bobaljik (2012)’s Containment Hypothesis
The superlative component of \textit{zui-duo} ‘at most’

- Bobaljik (2012)’s \textbf{Containment Hypothesis}: A superlative construction structurally embeds a comparative construction.

\begin{equation}
(17) \left[\text{SupP } \textit{zui} \left[\text{Comp}^+ \text{P Comp}^+ \left[\text{AdjP } \textit{duo} \right] \right]\right]
\end{equation}
Compositionality – Comp+P

Comp+P

Comp+P

Q-AdjP

duo

(18) $\left[duo\right]^c = \lambda \alpha.\mu_c(\alpha) \quad <\eta, d>$

✓ A measure function mapping the focus alternatives to their corresponding positions along a contextually given scale (cf. Wellwood et al. 2012, Wellwood 2014, 2015).

(19) $\left[\text{Comp}^+P\right]^c = \lambda \alpha \lambda \beta.\mu_c(\alpha) > \mu_c(\beta) \quad <\eta, <\eta, t>>$

✓ A comparison relation between the prejacent α and its alternatives β
The first argument is a comparison relation between the prejacent and its alternatives.

For all the alternatives β non-identical to the prejacent, they are ranked lower than the prejacent α.

$$\exists \beta \in \mathcal{C} \land \beta \neq \alpha \Rightarrow \mu_c(\alpha) > \mu_c(\beta)$$
The internal structure of **zui-duo**

- The whole superlative component, serving as a domain restrictor, is structurally embedded under an (covert) existential operator: **E-OP**.

The internal structure of **zui-duo** ‘at most’:

(22) \([E-OP \ [SupP zui [Comp+P Comp^+ [AdjP duo]]]]\)

The semantics of **E-OP**

(23) \([E-OP]^w, c\)

\[= \lambda SUP <<st, t>, <st, t>> \lambda C <st, t> \lambda \alpha <st>. \exists \gamma[\gamma \in C \land \gamma_w \land SUP (C, \alpha)]\]

- There is one alternative in the domain (i.e., \(C \cap SUP\)) such that the alternative is true
Compositionality – The morpho-semantics of *zuiduo*

(23) $[[E-OP]]^w, c$

$= \lambda SUP_{<<s_t, t>>} \lambda C_{<s_t, t>>} \lambda \alpha_{<s_t>>} \exists \gamma [\gamma \in C \land \gamma_w \land SUP (C, \alpha)]$

✓ There is one alternative in the domain (i.e., $C \cap SUP$) such that the alternative is true.

$[[zui-duo \ (C)]]^w, c =$

$\lambda \alpha_{<s_t>>} \exists \gamma [\gamma \in C \land \gamma_w \land \forall \beta [\beta \in C \land \beta \neq \alpha \rightarrow \mu_c (\alpha) > \mu_c (\beta)]]$
The morpho-semantics of *zui-duo*

- A propositional version

\[
\left[zui-duo \left(C \right) \right]^{w,c} = \\
\lambda \alpha_{<st>} . \exists \gamma \left[\gamma \in C \land \gamma_w \land \forall \beta \left[\beta \in C \land \beta \neq \alpha \rightarrow \mu_c(\alpha) > \mu_c(\beta) \right] \right]
\]

The internal structure of *zui-duo* ‘at most’:

(22) \[
\textbf{E-OP} \left[\text{SupP } \textbf{zui} \left[\text{Comp+P Comp+} \left[\text{AdjP duo} \right] \right] \right]
\]

The \textbf{E-OP} is overt in English *at most*:

(24) \[
\textbf{at} \left[\text{SupP -est} \left[\text{Comp+P Comp+} \left[\text{AdjP much} \right] \right] \right] \]
Explaining the morpho-semantic puzzle
Focus-Sensitivity

(25) Lee zuiduo [bought apples]_F.

✓ A contextual ranking: cook dinner > buy apples > clean house

(26) a. LF: [vP zui-duo(C) [vP[vP Lee [bought apples]_F]~C]]

b. \(\alpha \sim C \) is defined iff

\[
[\alpha]^o \in C \land \exists \alpha' [\alpha' \neq \alpha \land [\alpha']^o \in C] \land C \subseteq [\alpha]^f
\]

c. \([23a)]^w_c = 1 \) iff

\[
\exists \gamma [\gamma \in C \land \gamma_w \land \forall \beta [\beta \in C \land \beta \neq (\lambda w. \text{Lee bought}_{w} \text{ apples}) \rightarrow \mu_c(\lambda w. \text{Lee bought}_{w} \text{ apples}) > \mu_c(\beta)]]
\]

d. \(C \cap \text{SUP}: \{\text{Lee bought apples, Lee cleaned house}\} \)
Focus-Sensitivity

(27) Lee zuiduo bought [apples]_F.

✓ A contextual ranking: cherries > apples > bananas

(28) a. LF: [vP zui-duo(C) [vP[vP Lee bought [apples]_F]~C]]

b. α ~C is defined iff

\[[\alpha]^{o} \in C \land \exists \alpha'[\alpha' \neq \alpha \land [\alpha']^{o} \in C] \land C \subseteq [\alpha]^{f} \]

c. \[(25a)]^{w,c} = 1 \text{ iff}

\[\exists \gamma[\gamma \in C \land \gamma_{w} \land \forall \beta[\beta \in C \land \beta \neq (\lambda w. \text{Lee bought}_{w} \text{ apples}) \rightarrow \mu_{c}(\lambda w. \text{Lee bought}_{w} \text{ apples}) > \mu_{c}(\beta)]] \]

d. \(C \cap \text{SUP}: \{\text{Lee bought apples, Lee bought bananas}\}\)
Variety of Scales

Numerical Scale (e.g., \(\ldots 4 > 3 > 2 \ldots \))

Plurality Scale (e.g., \(a \oplus b \oplus c > a \oplus b > a, b \))

Lexical Scale (e.g., gold > silver > bronze)

Pragmatic Scale (e.g., cherries > apples > bananas)

- The dimension of the measure function \(\mu_c \) encoded in the Q-adjective is contextually-valued (Wellwood 2014, 2015).

- An observation:
 The ordering between alternatives **cannot** be **reversed** in the case of **numerical scales** and **plurality scales**, even with contextual manipulations.
The bounding property of SMs

Traditional wisdom: it is done by a non-strict comparison relation.

(29) The degree approach (e.g., Nouwen 2010, Kennedy 2015)

a. \([\text{at least}] = \lambda m_{<d} \lambda P_{<d, t}. \max\{n \mid P(n)\} \geq m\]
b. \([\text{at most}] = \lambda m_{<d} \lambda P_{<d, t}. \max\{n \mid P(n)\} \leq m\]

(30) The discourse-based approach

a. \([\text{at least (C)}]^{w, g} = \lambda p_{<s, t}. \exists q [q \in C \land q(w) \land q \geq_i p]\]
b. \([\text{at most (C)}]^{w, g} = \lambda p_{<s, t}. \forall q [q \in C \land q(w) \land q \leq_i p]\]

✓ E.g., Coppock & Brochhagen 2013, among others
The bounding property of SMs

- The **non-strict comparison** raises many questions:
 - What is the nature of the non-strict comparison relation?
 - Where does the non-strict comparison come from?
 - Is it a semantic primitive or a derived result?

- A superlative typically involves **a strict comparison**:

1a) Adam climbed the highest mountain.

Relative reading (e.g., Heim 1999, Sharvit & Stateva 2002, a.o.): Adam climbed a mountain higher than anyone else did.

\[\forall y[y \in C \land y \neq \text{adam} \rightarrow \max(\lambda d. \exists z[\text{mountain}(z) \land \text{high}(z) \geq d \land \text{adam climbed } z]) > \max(\lambda d. \exists z[\text{mountain}(z) \land \text{high}(z) \geq d \land y \text{ climbed } z]) \]
The bounding property of zuiduo

The current analysis:

✓ The non-strict comparison relation is derived from focus presuppositions combining with the superlative component.

(31) a. $\lbrack zui-duo (C) \rbrack^w, g =$

$\lambda \alpha_{<st>}. \exists \gamma[\gamma \in C \land \gamma_w \land \forall \beta[\beta \in C \land \beta \neq \alpha \rightarrow \mu_c(\alpha) > \mu_c(\beta)]]$

b. $\alpha \sim C$ is defined iff

$\lbrack \alpha \rbrack^o \in C \land \exists \alpha'[\alpha' \neq \alpha \land \lbrack \alpha' \rbrack^o \in C] \land C \subseteq \lbrack \alpha \rbrack^f$

c. $C \cap \textup{SUP}$: \{the prejacent α, the lower alternatives of α\}

d. There is one element in the domain $C \cap \textup{SUP}$ such that it is true.
Semantic parallels with disjunctions and epistemic indefinites

The current analysis captures two types of parallels:

- Patterning with epistemic indefinites, SMs (e.g., zuoduol at most) has an anti-specific domain (i.e., $C \cap \text{SUP}$).

 (cf. The anti-specific approach: Nouwen 2015)

- Patterning with disjunctions, SMs (e.g., zuoduol at most) makes an existential statement over the non-singleton domain.

 (cf. The disjunction approach: Büring 2008, among others)
Concluding Remarks

- Formal tools developed in the studies of **gradability** can be applied to those of **scalarity**.
 - In the current study, SMs make a case as well. What’s more, the degree morphology is obviously part of these focus operators.

- The **non-strict comparison** relation is not a semantic primitive, but derived from **focus presuppositions** and the **superlative** meaning (encoding a **strict comparison**).
Concluding Remarks

- More than one morpho-semantic route to the semantics of SMs:
 - **Q-adjectives** plus **even-if** (e.g., Japanese and Korean)
 a. *ooku-temo* ‘at most’ Japanese
 many-even.if
 b. *sukunaku-temo* ‘at least’
 few-even.if
 - **Q-adjectives** plus **comparatives** (e.g., Maghi, Hindi, Russian)
 a. *jaadaa se jaadaa* ‘at most’ Maghi
 more than more
 b. *kam se kam* ‘at least’
 less than less
Concluding Remarks

- The morpho-syntactic status of the E-OP:
 - Covert in Chinese;
 - Overt in English: *at least* and *at most*.
 - Overt in other languages:
 - Italian *almeno* ‘at least’ & *al massimo* ‘at most’;
 - French: *au moins* ‘at least’ & *au plus* ‘at most’;
 - Is the realization of the E-OP limited to the family of Indo-European languages?
Acknowledgment

I am very grateful to Peter Alrenga, Rajesh Bhatt, Simon Charlow, Isabelle Charnavel, Gennaro Chierchia, Veneeta Dayal, Yoshitaka Elewine, Jane Grimshaw, Hadas Kotek, Haoze Li, Chen-Sheng Luther Liu, Chris Kennedy, Manfred Krifka, Jon Ander Mendia, Marcin Morzycki, Doris Penka, Roger Schwarzschild, Yasu Sudo, Kristen Syrett, Yimei Xiang, and the audiences at CLS54 for valuable comments and constructive suggestions.

Special thanks to my dear informants, friends and colleagues:
Deepak Alok (on Hindi and Maghi data), Woojin Chung (on Korean data), Viviane Déprez (on French data), Vera Gor (on Russian data), Luca Iacoponi (on Italian data), Kunio Kinjo (on Japanese data), Livia Camargo Tavares Souza and Matt Barros (on Brazilian Portuguese), Umit Atlamaz and Yağmur Sağ (on Turkish data). Elyesa Seidel (on German data). I also thank Hazel Mitchley and Lydia Newkirk for valuable discussions and constructive comments on English sentences collected in this dissertation.
Thank you!
Zui-duo ‘at most’ & Type-shifting

A non-propositional version (by the Geach rule)

\[\llbracket \text{zui-duo } (C) \rrbracket_{w, c} = \lambda \alpha \llbracket_{\eta, \text{st}} \lambda P \llbracket_{\eta}. \exists \gamma [\gamma \in C \land \gamma_w (P) \land \forall \beta [\beta \in C \land \beta \neq \alpha \rightarrow \mu_c (\alpha) > \mu_c (\beta)]\]\n
A non-propositional version (by the backward Geach rule)

\[\llbracket \text{zui-duo } (C) \rrbracket_{w, c} = \lambda \alpha \llbracket_{\eta} \lambda P \llbracket_{\eta, \text{st}}. \exists \gamma [\gamma \in C \land P_w (\gamma) \land \forall \beta [\beta \in C \land \beta \neq \alpha \rightarrow \mu_c (\alpha) > \mu_c (\beta)]\]\n
See Coppock & Beaver (2014) for a similar treatment of English exclusive particles via type-shifting.
Selected References

