The Scarity and Quantificational Domain of Speaker Concession

Yi-Hsun Chen, Rutgers University
yc565@linguistics.rutgers.edu

Evaluative Meanings:
Theoretical and Computational Perspective
DGfS40, March 7–9, 2018
Outline

- Main ideas
- Five puzzles on concessive *at least*
- A formal proposal
- Explaining the five puzzles
- Conclusion
Main Ideas
Concessive *at least*

- Semantic ingredients of *at least* (ultimately, a unified one with epistemic *at least*):
 - A set of alternatives induced by **focus**;
 - A **comparison relation** (i.e., **ordering relation**) between the prejacent and its focus alternatives
 - An **evaluation** of the alternatives based on the interlocutors’ interests and goals in a given discourse (Biezma 2013);
 - The quantificational domain of *at least* must be **propositional**; What gets evaluated is a set of different circumstances (represented by the focus alternatives).
Concessive *at least*

- The pragmatic ingredient:
 - the speaker knows that the relevant higher alternatives are false in the context. (Biezma 2013)

- The piece of information that the relevant higher alternatives are contextually false can be:
 - Either *presupposed*, when the speaker uses concessive *at least*;
 - Or *asserted*, before the speaker uses concessive *at least*.
Five puzzles on concessive *at least*
Puzzle One: Ambiguity

English sentences containing at least are ambiguous (Kay 1992)

- An epistemic reading (EPI)

(1) EPI: Mary won at least a [silver]$_F$ medal.
 ✓ Ignorance inference

- A concessive reading (CON)

(2) CON: Mary didn’t win a gold medal, but at least she won a [silver]$_F$ medal.
 ✓ Concessive inference: preference and a “settle-for-less” flavor

- Biezma (2013): Only one at least
Ambiguity across languages

The EPI-CON ambiguity is actually far more pervasive than we thought (see also Grosz 2011):

- English: *at minimum*;
- Brazilian Portuguese: *pelo menos*;
- Chinese: *zhishao, zuishao, qima*;
- Japanese: *sukunaku-temo*;
- Italian: *al meno*;
- Maghi, Hindi: *kam se kam*;
- Turkish: *en az*;
- Russian (?)

A morpho-semantic puzzle: quantity adjectives and X-operators
Puzzle Two: Focus-sensitivity

EPI is focus-sensitive.

I observe that…

- CON is also focus-sensitive.
Puzzle Two: Focus-sensitivity

Scenario A: What did Adam do for our party tonight?
 Did he cook the dinner?
 ✓ A contextually given ranking (on what Adam could contribute):
 cook dinner > bring drinks > clean house

(3) a. Adam didn’t cook the dinner, but at least he
 [brought some drinks] \(_F\).
 b. #Adam didn’t cook the dinner, but at least he
 brought [some drinks] \(_F\).
Puzzle Two: Focus-sensitivity

Scenario B: What did Adam bring for our party tonight? Did he bring cakes?

✓ A contextually given ranking (on what Adam could bring):
cakes > drinks > chips

(4) a. #Adam didn’t bring cakes, but at least he [brought drinks]\textsubscript{F}.
 b. Adam didn’t bring cakes, but at least he brought [drinks]\textsubscript{F}.
Puzzle Three: Variety of Scales

EPI is compatible with variety of scales. (Krifka 1999, Coppock & Brochhagen 2013, Kennedy 2015, Mendia 2016, among others)

I observe that…

➢ CON is also compatible with variety of scales.
Puzzle Three: Variety of Scales

(5) **Numerical Scale** (e.g., \(4 \succ 3 \succ 2\))

John at least wrote \([three]_F\) books.

(6) **Plurality Scale** (e.g., \(a \oplus b \oplus c \succ a \oplus b \succ a, b\))

John at least invited \([Adam and Bill]_F\).

(7) **Lexical Scale** (e.g., gold \(\succ\) silver \(\succ\) bronze)

John at least won a \([silver]_F\) medal.

(8) **Pragmatic Scale** (e.g., cherries \(\succ\) apples \(\succ\) bananas)

John at least bought \([apples]_F\).
Puzzle Four: Two Scalar Effects

Scenario: Adam, Bill, Chris are playing dice. In each round, whoever gets a bigger number wins. A dice has six number on it: **six** is the **upper bound** and **one** the **lower bound** on the possible results. Adam threw the dice, but Chris missed the result. During his turn, he asked Bill what the result was.

Chris: What number did Adam get?

Did Adam got {one, two, three, four, five, six}?
Puzzle Four: Two Scalar Effects

TSE: The focus associate cannot be the element at the-top-of-the scale.

(9) Bill: #Adam at least got [six]$_F$.

BSE: The focus associate cannot be the element at the-bottom-of-the scale.

(10) Bill: #Adam didn’t get any number bigger than two, but at least he got [one]$_F$.

Bill: #Yes, at least he got [one]$_F$.
A lexical scale: gold medal > silver medal > bronze medal

(11) #Adam at least won a [gold]$_F$ medal. [TSE]

(12) A: We know that Adam has won a medal.
 What medal did Adam win? Did he win silver medal?
B: #Adam didn’t win a silver medal, but at least he won a [bronze]$_F$ medal. [BSE]

➢ To anticipate: TSE and BSE are of different nature!
Puzzle Five: Short Answers

Suppose there are three relevant individuals Adam, Bill and Chris in the discourse.

A: Who did John invite for his party?

B: At least [Adam and Bill]$_F$. \(\sqrt{\text{EPI, #CON}}\)

B: John didn’t invite all of them/ all the three people, but at least he invited [Adam and Bill]$_F$. \(\sqrt{\text{CON}}\)
Puzzle Five: Distribution

N&R: The **distribution** of EPI and CON is correlated with the **syntactic position** of **at least**.

(13) *At least* Adam won a [silver]$_F$ medal. #EPI, √CON
(14) Adam *at least* won a [silver]$_F$ medal. √EPI, √CON
(15) Adam won *at least* a [silver]$_F$ medal. √EPI, #CON

- The same syntactic-semantic correlation holds beyond English (e.g., Chinese, Turkish and see also Grosz 2011)
Interim Summary

- Puzzles on *concessive at least*:
 - The cross-linguistic nature of the EPI-CON ambiguity;
 - Focus-sensitivity;
 - Compatibility with various scales;
 - Two scalar effects: TSE and BSE;
 - Not available with short answers;
 - The distribution of CON is correlated with the syntactic position of *at least*.
A Formal Proposal
Concessive *at least*

- A propositional version

\[
\begin{align*}
\llbracket \text{at least } (C) \rrbracket^w, g &= \\
\lambda \alpha_{<st>}. \exists \gamma[\gamma \in C \land \gamma_w \land \forall \beta[\beta \in C \land \beta \neq \alpha \rightarrow \mu_c(\alpha) < \mu_c(\beta)]]
\end{align*}
\]

Semantic Ingredients of a concessive meaning

- A set of *focus* alternatives
- A *comparison relation* (ordering relation) between the prejacent and its focus alternatives
- An *evaluation* of the focus alternatives (Biezma 2013)
- A *propositional* quantificational domain

Pragmatics: The relevant higher alternatives are known to be false.
Only one *at least*

- A non-propositional version (by the Geach rule)

\[
[[\text{at least } (C)]]_{w,g} = \\
\lambda \alpha_{<\eta, \text{st}} \lambda P_{<\eta} . \exists \gamma \left[\gamma \in C \land \gamma_w(P) \land \forall \beta [\beta \in C \land \beta \neq \alpha \rightarrow \mu_c(\alpha) < \mu_c(\beta)] \right]
\]

- A non-propositional version (by the backward Geach rule)

\[
[[\text{at least } (C)]]_{w,g} = \\
\lambda \alpha_{<\eta} \lambda P_{<\eta, \text{st}} . \exists \gamma \left[\gamma \in C \land P_w(\gamma) \land \forall \beta [\beta \in C \land \beta \neq \alpha \rightarrow \mu_c(\alpha) < \mu_c(\beta)] \right]
\]

See Coppock & Beaver (2014) for discussions on type-shifting and exclusive particles.
Focus-Sensitivity

(16) Adam at least [brought drinks]_F.

✓ cook dinner > bring drinks > clean house

(17) a. LF: [at least(C) [[Adam [brought drinks]_F]~C]]

b. α ~C is defined iff

\[[\alpha]^o \in C \land \exists \alpha' [\alpha' \neq \alpha \land [\alpha']^o \in C] \land C \subseteq [\alpha]^f \]

c. \[(17a)]^w, g = 1 \text{ iff} \]

\[\exists \gamma [\gamma \in C \land \gamma_w \land \forall \beta [\beta \in C \land \beta \neq (\lambda w. \text{Adam bought}_w \text{ drinks})] \rightarrow \mu_c (\lambda w. \text{Adam bought}_w \text{ drinks}) < \mu_c (\beta)] \]

Assuming the pragmatic requirement is satisfied.
Focus-Sensitivity

(18) Adam at least brought [drinks]_F.
 ✓ cakes >drinks >chips

(19) a. LF: [at least(C) [[Adam brought [drinks]_F]~C]]

b. α ~C is defined iff
 \[\llbracket \alpha \rrbracket \circ \in C \land \exists \alpha' [\alpha' \neq \alpha \land \llbracket \alpha' \rrbracket \circ \in C] \land C \subseteq \llbracket \alpha \rrbracket^f\]

c. \[\llbracket (19a) \rrbracket^w, g = 1 \text{ iff} \]
 \[\exists \gamma [\gamma \in C \land \gamma^w \land \forall \beta [\beta \in C \land \beta \neq (\lambda w. \text{Adam bought}_{w} \text{drinks}) \rightarrow \mu_c (\lambda w. \text{Adam bought}_{w} \text{drinks}) < \mu_c (\beta)]\]

Assuming the pragmatic requirement is satisfied.
Variety of Scales

Numerical Scale (e.g., ...4 > 3 > 2...)

Plurality Scale (e.g., a ⊕ b ⊕ c > a ⊕ b > a, b)

Lexical Scale (e.g., gold > silver > bronze)

Pragmatic Scale (e.g., cherries > apples > bananas)

The dimension of μ_c is:

- contextually given;
- sensitive to interlocutors’ interests and goals in a given discourse (Biezma 2013)
The Top-of-the-Scale Effect (TSE)

(20) #Adam at least got [six]_F.

(21) a. LF: [at least](C) [[Adam brought [six]_F] ~ C]]

b. [at least (C)]^w.g =

λα<st>.∃γ[γ ∈ C ∧ γ_w ∧ ∀β[β ∈ C ∧ β ≠ α → μ_c(α) < μ_c(β)]]

c. C ∩ SUP = {Adam got six} A singleton set!

- The use of at least is vacuous (regardless of a concessive or epistemic one), i.e., equals to the bare form without at least
- TSE arises from a violation of semantic vacuity (Khatib 2013)
Semantic Vacuity

Al Khatib (2013):
Semantic operators **cannot** be used *vacuously*.

(22) #John only saw [every student]__F.

(23) Of Mary and Sue, #John only saw [Mary and Sue]__F.
 √John only saw [Mary]__F.
 √John only saw [Sue]__F.
The Bottom-of-the-Scale Effect (BSE)

(24) #Adam at least got [one]$_F$.

(25) a. LF: [at least(C) [[Adam brought [one]$_F$]~C]]

b. $[[\text{at least (C)}]]^w \circ g =$

$$\lambda \alpha_{<st>} \cdot \exists \gamma [\gamma \in C \land \gamma_w \land \forall \beta [\beta \in C \land \beta \neq \alpha \rightarrow \mu_c(\alpha) < \mu_c(\beta)]]$$

Adam got one, Adam got two,

Adam got three, Adam got four,

Adam got five, Adam got six

c. $C = \text{SUP} = C \cap \text{SUP} =$

BSE arises from discourse uninformativity and can be repaired.

Sarcasm/ joking: an intentional flouting the maxim of quantity.
Short Answers

(26) A: Who did John invite?

B: At least [Adam and Bill]_F. √EPI, #CON

- My claim: the quantificational domain of concessive at least has to be propositional.
- The idea: What gets evaluated is a set of different circumstances (i.e., a set of propositional focus alternatives).

(27) a. [At least (C) [[Adam and Bill]_F] ~C]]
 b. [At least (C) [[Adam and Bill]_F] ~C]] [∀x John invited x]
 c. [At least (C) [[John invited [Adam and Bill]_F] ~C]]

✓ Compatible with 27a, b; Incompatible with 27c.
The distribution of CON

Sentential \textbf{at least} & Preverbal \textbf{at least}: \sqrt{\text{CON}}

(28) a. \([_{\text{IP}} \text{ at least } (C) \ [_{\text{IP}}[_{\text{IP}} \text{ Adam won a } [\text{silver}]_F \text{ medal}]] \sim C]\]
 b. \([_{\text{vP}} \text{ at least } (C)[_{\text{vP}}[_{\text{vP}} \text{ Adam won a } [\text{silver}]_F \text{ medal}]] \sim C]\]

Prenominal \textbf{at least}: \#CON

(29) \([_{\text{DP}} \text{ at least } (C) \ [_{\text{DP}}[_{\text{DP}} \text{ a } [\text{silver}]_F \text{ medal}] \sim C]] \ [\lambda x \text{ Adam won } x]\]

- A note on the distribution of EPI:

(30) \#At least/ \#Only/ \#Even Adam won a [silver]_F medal.
Conclusion

- **Concessive *at least***:
 - The cross-linguistic nature of the EPI-CON ambiguity;
 - Focus-sensitivity;
 - Compatibility with various scales;
 - Two scalar effects: TSE and BSE;
 - Not available with short answers;
 - The distribution of CON is correlated with the syntactic position of *at least*.

- The idea: only one *at least*
 - μ_c is an *evaluative* measure function in concessive *at least*
Acknowledgment

I am very grateful to Peter Alrenga, Rajesh Bhatt, Simon Charlow, Isabelle Charnavel, Gennaro Chierchia, Veneeta Dayal, Yoshitaka Elewine, Jane Grimshaw, Patrick Grosz, Hadas Kotek, Haoze Li, Chen-Sheng Luther Liu, Manfred Krifka, Jon Ander Mendia, Marcin Morzycki, Doris Penka, Roger Schwarzschild, Yasu Sudo, Kristen Syrett, Yimei Xiang, and the audiences at DGfS40 for valuable comments and constructive suggestions.

Special thanks to my dearest informants, friends and colleagues:
Deepak Alok (on Hindi and Maghi data), Woojin Chung (on Korean data), Viviane Déprez (on French data), Vera Gor (on Russian data), Luca Iacoponi (on Italian data), Kunio Kinjo (on Japanese data), Livia Camargo Tavares Souza and Matt Barros (on Brazilian Portuguese), Umit Atlamaz and Yağmur Sağ (on Turkish data). Elyesa Seidel (on German data). I also thank Hazel Mitchley and Lydia Newkirk for valuable discussions and constructive comments on English sentences collected in this dissertation.
Thank you!

Comments and suggestions are very welcome!
References

References

The status of the higher alternatives

Presupposition vs. Assertion

✓ An invitation priority ranking: Adam \succ Bill \succ Chris

B: No, but at least he invited [Bill]$_F$.

B: Yes, at least he invited [Bill]$_F$.
A: Wait a minute! John didn’t invite Adam?
Biezma (2013)

A: How was your date?
B: Not bad, at least he was smart.

An Evaluative Scale
(based on discourse participants’ interests and goals in a context)

Great: smart & tall & funny
Good: smart & tall & ¬funny, smart & funny & ¬tall
 tall & funny & ¬smart
Ok: smart & ¬tall & ¬funny,
 tall & ¬funny & ¬smart,
 funny & ¬tall & ¬smart
Bad: ¬smart & ¬tall & ¬funny